Molecular Evolution in Collapsing Prestellar Cores

نویسندگان

  • Yuri Aikawa
  • Nagayoshi Ohashi
  • Eric Herbst
  • Shigehisa Takakuwa
چکیده

We have investigated the evolution and distribution of molecules in collapsing prestellar cores via numerical chemical models, adopting the Larson-Penston solution and its delayed analogues to study collapse. Molecular abundances and distributions in a collapsing core are determined by the balance among the dynamical, chemical and adsorption time scales. When the central density nH of a prestellar core with the LarsonPenston flow rises to 3× 10 cm, the CCS and CO column densities are calculated to show central holes of radius 7000 AU and 4000 AU, respectively, while the column density of N2H + is centrally peaked. These predictions are consistent with observations of L1544. If the dynamical time scale of the core is larger than that of the Larson-Penston solution owing to magnetic fields, rotation, or turbulence, the column densities of CO and CCS are smaller, and their holes are larger than in the Larson-Penston core with the same central gas density. On the other hand, N2H + and NH3 are more abundant in the more slowly collapsing core. Therefore, molecular distributions can probe the collapse time scale of prestellar cores. Deuterium fractionation has also been studied via numerical calculations. The deuterium fraction in molecules increases as a core evolves

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Evolution in Collapsing Prestellar Cores III: Contraction of A Bonnor-Ebert Sphere

The gravitational collapse of a spherical cloud core is investigated by numerical calculations. The initial conditions of the core lie close to the critical BonnorEbert sphere with a central density of ∼ 10 cm in one model (α = 1.1), while gravity overwhelms pressure in the other (α = 4.0), where α is the internal gravity-to-pressure ratio. The α = 1.1 model shows reasonable agreement with the ...

متن کامل

An Observational Perspective of Low Mass Dense Cores II: Evolution towards the Initial Mass Function

We review the properties of low mass dense molecular cloud cores, including starless, prestellar, and Class 0 protostellar cores, as derived from observations. In particular we discuss them in the context of the current debate surrounding the formation and evolution of cores. There exist several families of model scenarios to explain this evolution (with many variations of each) that can be tho...

متن کامل

Molecular Evolution in Collapsing Prestellar Cores II: The Effect of Grain-surface Reactions

The molecular evolution that occurs in collapsing prestellar cores is investigated. To model the dynamics, we adopt the Larson-Penston solution and analogues with slower rates of collapse. For the chemistry, we utilize the new standard model (NSM) with the addition of deuterium fractionation and grain-surface reactions treated via the modified rate approach. The use of surface reactions disting...

متن کامل

Star formation in Perseus IV .

Context. In our SCUBA survey of Perseus, we find that the fraction of protostellar cores increases towards higher masses and the most massive cores are all protostellar. Aims. In this paper we consider the possible explanations of this apparent mass dependence in the evolutionary status of these cores. We investigate the implications for protostellar evolution and the mapping of the embedded co...

متن کامل

Enabling Star Formation via Spontaneous Molecular Dipole Orientation in Icy Solids

It is shown here how new experimental data, for the electrical properties of solid CO, can be used to fill important gaps in our understanding of the evolution of prestellar cores. Dust grains with a mantle of CO lead to a reduction in the degree of ionization in these cores by a factor of between 5 and 6. The lifetimes for expulsion of magnetic fields from cores, a process generally necessary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002